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LATERAL DYNAMIC RESPONSE OF CONSTRAINED-
HEAD PiLES

By Alvaro Velez," George Gazetas,” M. ASCE, and Raman Krishnan® -

ABsTRACT: This paper utilizes an efficient finite-element formulation to study
the dynamic response characteristics of single constrained-head piles embed-
ded in a soil stratum whose modulus is proportional to depth from the surface.
The excitation consists of a harmonic horizontal force or moment applied at the
pile head, and the soil is modeled as a linear hysteretic medium. The results ‘-
of a comprehensive parametric study are presented in the form of non-dimen- -
sional graphs from which one can readily estimate static and dynamic stiff-
nesses and effective damping ratios of piles in many practical situations. For™
flexible piles, in particular, simple, yet sufficiently accurate, algebraic formulas
are derived, valid for a wide range of problem parameters. Finally, the concept
of an effective soil modulus is introduced to elucidate the importance of soil
nonhomogeneity and to gain valuable insight to the mechanics of the problem.

INTRODUCTION

The dynamic behavior of end-bearing and floating single piles sub-
jected to horizontal and moment loading has been studied extensively
in recent years. The developed formulations may be broadly classified
into three categories: (1) Dynamic Winkler-foundation type formula-
tions, which neglect the dynamic coupling between forces and displace-
ments at various points along the pile-soil interface (6,11,15,18,19); (2)
analytical continuum type formulations which express the lateral dy-
namic soil pressure, in terms of the natural modal displacements of the
soil deposit in vertical shear waves (9,12,17,30); and (3) dynamic finite-
element formulations which use axisymmetric elements and special “en-
ergy-transmitting’”” boundaries (1,4,14). 2

With these formulations parametric studies have been conducted and
solutions are now. available for a variety of idealized situations
(4,6;9,11,12,14,15,17,19,27,31). However, most of the presented results
apply to homogeneous soil masses. Although for deep uniform deposits
of stiff clays the assumption of ideal homogeneous soil may be a satis-
factory approximation, consideration of nonhomogeneity would be more
realistic in many practical situations, since soil stiffness usually increases
with depth. Unfortunately, the practicing geotechnical engineer in-
volved in preliminary design of piles against dynamic loading has little

* choice (before embarking into detailed analyses using available com-
puter codes) other than to use available homogeneous solutions with an
appropriately selected “‘effective’” modulus for the soil. Yet, there is very
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little published information to guide the selection of such a modulus,
and the engineer has to rely upon his own, often limited, experience.

The major goal of this paper is to present solutions which may be
readily utilized in practice to obtain realistic estimates of dynamic lateral
deformations of piles embedded in nonhomogeneous soil profiles. To
this end, the results of a comprehensive parametric study are presented
in the form of nondimensional graphs and simple expressions, valid for
a wide range of the crucial problem parameters. The results have been
obtained for a soil stratum having a linearly increasing stiffness with
depth—an idealization adopted not only for its simplicity but, also, for
its special ability to represent actual soil behavior under lateral pile load-
ing, as explained later in the paper. Therefore, the presented solutions
will be useful even for soil profiles where a less rapid increase of mod-
ulus with depth seems appropriate. _ _

A second objective of the paper is to focus on the effects of soil non-
homogeneity on the lateral static and dynamic response of piles. By trying
to physically explain these effects, valuable insight is gained into the
mechanics of the problem. It is, moreover, shown that the choice of an
““effective’” soil modulus depends not only on the type of loading (force
or moment) but, also, on its frequency of oscillation. Finally, criteria are
developed to define when a pile is ‘flexible’ under static and dynamic
loads. It is worth emphasizing that even some of the static results pre-
sented in this paper are mostly new in the geotechnical literature.

STATEMENT OF THE PROBLEM AND THE NONHOMOGENEOUS SOIL MoDEL

Figure 1 sketches the system to be studied. A constrained-head cir-
cular pile of diameter d and length L is embedded in a nonhomogeneous
soil stratum underlain by rigid bedrock at depth L. The pile is treated
as a linear elastic beam having constant Young’s modulus, E,, and mass
density, p, . The soil is assumed to be a linear hysteretic medium with
a constant Poisson’s ratio, v, a constant mass density, p;, and a Young's
modulus increasing linearly with depth

s By By i ragsicn e b 3o i R RGNS TSRS (1)
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) soil mass density: ps

Poisson's ratio of soil: v

damping ratio of soil: B . g

FIG. 1.—End-Bearing Constrained-Head Pile in Soil Stratum with Modulus Pro-
portional to Depth
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in which E, = the modulus at a depth z = d. The internal energy dis-
sipating characteristics of the soil are described through a frequency-
independent hysteretic dampmg ratio, B(z), decreasmg function of depth
as explained later.

The constraint at the pile head may arise from the presence of a p11e—
cap or of a foundation mat; also, in some structures such as off-shore
platforms, an elastic constraint may be provided through a direct con-
nection of the pile with the superstructure. In all cases, the dynamic
response of the foundation to an arbitrary harmonic excitation may be
easily computed once the dynamic stiffnesses (also called dynamic
impedances) at the top of the pile are known for each particular fre-
quency of interest. With lateral loading, three impedances must be spec-
ified, Hpy , Hye and Ky, associated with swaying, rocking and coupled
swaying-rocking oscillations, respectively. For each particular sinusoidal
excitation (force or moment) having frequency w, a dynamic impedance
is defined as the ratio between the magnitudes of excitation and of the
resulting steady-state d1sp1acement or rotation at the pile head. For ex-
ample, the swaying impedance is defined as

P, exp (iwt _
g{HH = - p ( ) ................. s ks Gy (o Rl el N o (2)
U, exp [i(wt + d)] T

in which P = P, exp (iwt) = the horizontal dynamic force and u = u, exp

- [i(wt + ¢)] = the resulting steady-state horizontal displacement when no

rotation is allowed at the pile top (‘fixed-head’ pile). Figure 2 illustrates
the definitions of the three impedances. The phase angle difference, ¢,
between dynamic displacement and excitation is due to the presence of
damping in the system; part of the input energy is dissipated through
hysteretic action in the soil (internal damping), while another part gets
lost with waves spreading outward away from the pile (radiation damp-
ing). It has become traditional in the soil dynamics literature (e.g., 1, 6,
8, 11, 14, 17, 26) to use complex notation and express the dynamic
impedances in the form, e.g.,

3{HH = KHH =f l(l)CHH ................. Gl ......................... (3)
in which i = V/(-1). The real component of the 1mpedance K HH , THAY

FIG. 2.—Definition of Three Pile-Head Impedances
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be interpreted as a ‘spring’ stiffness while Cyy can be thought of as a
‘dashpot’ coefficient. The word “constant” has been avoided because
both Kyy and Cyy are functions of frequency. It is convenient to intro-
duce a dimensionless coefficient, Dyy, in place of Cyy (dimension
[FTL™']); the two coefficients are related by

Dyy can be considered to be the effective critical damping ratio in the
system (1,6). A frequency-independent Dy represents hysteretic damp-
ing, associated with material nonlinearities, while Dyy increasing with
frequency represents viscous damping, arising from the loss of energy
due to outward spreading waves. :

At this point some comments seem appropriate concerning the selec-
tion of a nonhomogeneous soil model characterized by moduli increas-
ing linearly with depth. Clearly, the simplicity of the model has been a
factor in our consideration. More important, however, is the fact that
this model appears capable of representing with reasonable accuracy many
actual soil profiles. For instance, in normally consolidated clays, the un-
drained Young’s modulus, E,, is in many cases proportional to the un-
drained shear strength; the latter is linearly related to the effective mean
confining pressure which, in turn, is proportional to depth. Thus, E, is
proportional to depth (i.e., of the form of Eq. 1).

Furthermore, an additional argument may be advanced in favor of the
chosen model when considering lateral loading of the soil by a pile. That
is, a linear analysis with soil stiffness being proportional to depth may
indirectly take into account soil nonlinearity, as values of the soil secant
modulus near the surface are likely to be reduced because of the de-
veloping large shear strains associated with the large pile deflections near
the pile head. In other words, even when the profile of soil moduli de-
termined at very low shear strain amplitudes (y = 107°) exhibits'a milder
than the linear increase with depth, as e.g., in case of sand and over-
consolidated-clay deposits, the actual profile of secant moduli consistent
with the expected levels of strain may still be better approximated with
the chosen linear variation (Eq. 1).

It is interesting to note that published experimental results strongly
support the linear increase of (secant) modulus with depth not only in
deposits of normally consolidated clays and of cohesionless soils (10,24,29),
but even in stiff, overconsolidated clays (10,16,25). Jamiolkowski and
Garassino (10) have presented a comprehensive list of the results of such
published experimental measurements. Although these tests were in-
- terpreted by means of the Winkler-foundation model and, thus, the
backfigured moduli are not identical with the soil Young’s moduli con-
sidered here, one may conclude that Eq. 1 realistically represents many
actually encountered soil deposits subjected to lateral pile loading.

In response to the increasing soil deformation near the ground sur-
face, the hysteretic damping ratio in the soil, B(z), is taken as a decreas-
ing function of depth; in this study, it varies from a maximum value of
8% immediately below the surface to a minimum of 2% at greater depths.
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Sensitivity studies, documented by the writers (31), have shown that the
exact distribution of damping at intermediate depths has no substantial
effect on pile response, as long as the average value of B over the “active’
pile length remains the same. Hence, only this average value, B, is re-
ported in the sequel.

ResuLTs oF FINITE ELEMENT PARAMETER STuDY

The finite-element formulation of Blaney, Kausel and Roesset (4) has
been used in this study. The geometry is idealized by a cylindrical region
surrounding the pile and a “far-field” of semi-infinite horizontal extent.
The pile is modeled as a series of beam elements and it is assumed to
be hinged at the baserock (i.e., at z = L). Key ingredient of the for-
mulation is the derivation of a so-called “consistent boundary”” matrix
which is placed at the edge of the central cylindrical region and repro-
duces the effect of the ““far field” in a rigorous fashion (13). Thus, a
theoretically perfect absorption of outward spreading waves is accom-
plished and no artificial trapping of wave energy can occur. Moreover,
in cases where the soil properties do not change in the horizontal di-
rection, as in the present study, the “consistent boundary”” can be placed
directly at the pile-soil interface. Hence, a substantial economy is achieved
and it becomes quite feasible to conduct comprehensive parameter stud-
ies, like the one reported herein and those in Refs. 1, 4 and 6. For more
details see the aforementioned original publications.

Results are presented for each of the three impedances, expressed in
terms of the normalized stiffnesses =~

Ken  Kum e Kum
(d Es), (d3Es), (dzEs)

and the corresponding effective damping ratios, Dpy, Dym and Dy -
The above six quantities depend on the following dimensionless param-
eters of the system: (1) The ratio E,/E, of the Young’s modulus of the
pile over the Young’s modulus of the soil at depth z = d (Eq. 1); (2) the
slenderness ratio, L/d; (3) the dimensionless frequency factor, a;, = wd/
V,, in which V, = the S-wave velocity of the soil at z = d; (4) the internal
hysteretic damping ratio in the soil, B, assumed to be either a constant
or a decreasing function of depth; (5) the Poisson’s ratio, v, of the soil;
and (6) the ratio of mass densities, p,/p, of pile and soil.. :

The presented non-dimensional plots, derived herein for circular piles
of solid, uniform cross-section with diameter d, can also be used for piles
with other cross-section shapes. To this end, an equivalent diameter, d’,
and an equivalent Young's modulus, E,, must be first defined. :d'‘is
taken as the width of the pile measured perpendicular to the direction
of loading; E} is selected so that the product E, w(d')*/64 is the same as
E,I, of the actual pile. For example, for a pipe pile of modulus E,, ex-
ternal diameter d, and internal diameter d;, the equivalent solid pile has:
d' =d,and E} = E,(d; — d})/d; . The equivalence is mathematically exact
in this case (pipe pile), but it is only an-approximation for other shapes,
such as with square or H-piles. : g :

By choosing Young’s modulus to normalize the stiffnesses (Eq. 5) and
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TABLE 1.—Cases Studied

Nature of Nature of
E/E; L/d l,/d static behavior l,/d dynamic behavior
(1) (2) (3) “eo () (5) (6)
58 5 4.1 ‘Flexible’ 8.2 Non-‘Flexible’
10 ‘Flexible’ , ‘Flexible’
15 ‘Flexible’ © ‘| ‘Flexible’
25 ‘Flexible’ i< ‘Flexible’ . |
- 40 : ‘Flexible’ | ‘Flexible”
2904 .5 5.6 | Almost ‘Flexible’ 10.1 | Non-'Flexible’
10 ~ | ‘Flexible’ 3 | Almost ‘Flexible’
15 fioa .+t ‘Flexible’ . “Flexible’
5 1 ‘Flexible’ - | ‘Flexible”"
: 40 i ‘Flexible’ » ‘Flexible”
1,450 5 8.0 Non-‘Flexible’ - 12:5 Non-‘Flexible’
: 1 10 : ‘Flexible’ : : Non-‘Flexible’
15 o " ‘Flexible’ : ““Flexible’
25 : | “Flexible’ Sl L0 T u] - "Flexible®
40 ‘Flexible’ & -‘Flexible’ -
- 29,000 5 1.14.9 | Non-‘Flexible’ 19.8 ‘Non-‘Flexible’
10 ' Non-‘Flexible’ & s Non-‘Flexible’
15 L ‘Flexible’ . Non-‘Flexible”
2 ‘Flexible’ s .-t ‘Flexible”
40 ‘Flexible’ P ‘Flexible’
145,000 25h 20.5 Non-‘Flexible’ .24.6 .| Non-‘Flexible’
10 Non-‘Flexible’ ] Non-Flexible’
15 Non-‘Flexible’ " Non-‘Flexible’
25 ‘Flexible’ ; Almost ‘Flexible’
40 ‘Flexible’” - ‘Flexible’

to represent the contrast in stiffness between p11e and soil (E,/E,), the
effect of v and p,/p;, was found to be minimal (31), in agreement with
the findings in Refs. 4, 6, 14, 23. Thus, although most of the presented
results were obtained for v =.0.40 and p,/p; = 1.60, they are valid -for
0.25 = v < 0.48 and 1.40 = p,/p, =< 2 50, w1th sufficient accuracy for
most applications. :

Table 1 lists the twenty-ﬁve combmanons of moduli ratlo ‘E,/ ES o and
slenderness ratio, L/d, studied in this paper. Results are presented only
for an average hysteretic dampmg ratio B = 0.05, although several anal-
yses with B = 0.02 have also been performed in the course of this work:
(31). For each of the twenty-five combinations the frequency factor, a,,
varies from 0.01 to 1.2. Thus, the presented information encompasses a
very wide range of parameters, covering most practical situations..

STATIC STIFFNESSES

By allowmg the frequency of oscﬂlanon to approach zero one can study
the static behavior of laterally loaded constrained-head piles—a problem
for which only a limited number of approximate continuum-type solu-
tions has so far been published (2,21), in addition, of course, to Winkler
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FIG. 3.—Dependence on Static Stiffnesses on E,/E; and L/d

foundation-type solutions with subgrade modulus proportional to depth
(16,28).

Figure 3 portrays the dependence of the three normalized static Stiff-
nesses, Kyy/(dEy), K/ (d°E,) and. Kup/ (dZES) on the two most crucial
parameters of the system, E,/E, and L, . It is noticed that, with the ex-
ception of very short and ngld piles:(L/d = 5, E,/E; = 104) static pile
stiffnesses are quite insensitive to variations in L/d, but tend to increase
substantially with increasing E,/E,. Especially. sensmve to increases in
E,/E, is the rocking stiffness.

Poulos (21,22) and Banerjee and Davies (2) have presented results for
the static horizontal displacement of fixed-head piles embedded in soil
with modulus proportional to depth. Their solutions, however, are only
approximate: Poulos (21) utilized Mindlin’s expressions for a homoge-
neous soil by making the simplifying assumption that a point load in-
duces on two identical points in a nonhomogeneous and a homogene-
ous halfspace displacements which are inversely proportional to the
respective moduli at these points; Banerjee and Davies (2) extended Min-
dlin’s solution to a point load acting at the interface of a two-layer half-
space and then empirically extrapolated it to a linearly nonhomogeneous
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halfspace. Results from these two studies are compared in Fig. 3 with
the results of the (rigorous) finite-element formulation used by the writ-
ers. For a pile with L/d = 25 Banerjee et al. (2) overpredict while Poulos
(21) underpredicts Kyy/(dE,), throughout the E,/E, range examined; the
discrepancies arerather small, however, for relatively ‘soft’ piles
(s = 10%). No published results are known to the authors for the oth-
er two stiffnesses, Ky and Ky, which are studied herein.

A significant conclusion can now be drawn from Fig. 3. For each value
of E,/E, there seems to exist a “critical’ slenderness ratio, l;/d, beyond
which L/d has no influence on the static stiffnesses of the pile. For in-
stance, for E,/E; = 10% I,/d = 12 and the static stiffnesses coincide for
L/d values of 15, 25, and 40. This suggests that the loads imposed at
- the head of a long-enough pile are essentially felt only down to a depth
l; from the ground surface. In other words, piles with length L greater
than [, resist the imposed loads through only their upper part, of length
s ; the lower part, of length (L — ), remains practically “idle’”” and its
size has no effect on pile response. The length I, is being named ‘active’
length and piles with L = [, are hereafter called ‘flexible’ piles. In the
literature (6) such piles have also been referred to as ‘long’ piles.

Careful examination of the distribution of pile deflections and rota-
tions with depth for all the studied cases (Table 1) confirms that, indeed,
in most situations, pile deformations become negligibly small below a
depth of about five to fifteen diameters from the ground surface. On the
basis of the various deformation profiles, in conjunction with the results
of Fig. 3, ‘active’ lengths were estimated for both horizontal and rocking
type of loading (Fig. 2). In all cases, the horizontal loading influenced
depths, I;, greater than those of the moment loading. A unique, simple
‘expression was then derived for the largest (and, thus, critical) ‘active’
length in each case:

l E 0.21 X F o
e R T o e 2 S e S 6
d (E> (©)

The accuracy of Eq. 6 (error within 10%) is sufficient for most applica-
tions. At depths below z = [, a statically loaded pile will sustain defor-
mations less than 5% of the corresponding head deformations; further-
more, removing the lower (non-active) portion of a pile will affect by
less than 0.1% its head static stiffnesses. '

For ‘flexible’ piles, i.e., piles-with L = [, the slenderness ratio, L/d,
has no effect on the response, which may, thus, be uniquely related to
E,/E;. The following simple algebraic formulas fit the length-indepen-
dent curves of Fig. 3 with a very reasonable accuracy and are, hence,
recommended for practical use: *

0.35
Kyy E,,)
Svie SIQIBEY= e Or HEa ] RIgeh Of WSOt oguIG- SUIUDOM T
dE, (Es (7a)
"\ 0.80

X, E

= §. 3ppSennpsoiiodnn sk etmiag ds0nahl bwd oveaant b
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Dynamic STIFFNESs AND DAMPING

Swaying.—Figures 4 and 5 portray the dependence of Kyy/(dE,) and
Dyy , respectively, on the frequency factor, a, = wd/V,, the moduli ratio,
E,/E,, and the slenderness ratio, L/d, for an average hysteretic damping
ratio in the soil B = 0.05. The practical usefulness of these plots arises
from their nondimensional form and the wide range of system param-
eters considered. :

Several features regarding the dynamic stiffness are worthy of note in
Fig. 4.

In general, Kyy exhibits only a small sensitivity to variations in fre-
quency. For slender piles and relatively stiff soil, in particular, use of a
frequency-independent stiffness seems to be accurate enough in most
applications; the static stiffness computed from Eq. 7a can then be used
approximately at any frequency of oscillation. On the other hand, for
very stiff and short piles (e.g., with E,/E; = 29,000 and L/d = 10) os-
cillating at high frequency factors, Kyy attains appreciable smaller than
its static low-frequency values.

Moreover, resonance phenomena create a valley in all the stiffness-
vs.-frequency curves. The sharpness of the valley increases with de-
creasing L/d, while the frequency of the minimum value essentially co-
incides with the fundamental natural frequency of the soil deposit, w,,
in vertically propagating shear waves. Indeed, w; of a soil deposit with
modulus proportional to depth is given by (e.g., 5)

V

» o /\\?\ 2 i e R s } 1450

ST e T } 290

......... T

FIG. 4.—Variation of Dynamic Swaying Stiffness with 4, , E,/E,and L/d (8 = 0.50)
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FIG. 5.—Variation of Swaying Da‘mping' Ratio with a,, E,/E; and L/d (B = 0.50)

in which V, = the shear-wave velocity of a soil at depth z = d. From Eq.
'8, the fundamental frequency factor, a,;, becomes

wld <L> S
=1.20{-
V,

Equation 9 yields for various L/d ratios the a4, values displayed in Table
2. The remarkably close agreement between these a,, values and the
respective resonant frequency factors observed in Fig. 5 are apparent.

Note, however, that in reality such a resonance phenomenon will only
be observed if, indeed, a very stiff, rock-like formation exists at the depth
assumed in the model. For ‘floating’ piles in very deep soil deposits no
resonance will practically occur.

Several noteworthy trends are revealed in the damping ratio-vs.-fre-
quency plots shown in Fig. 5.

At frequencies below the first resonance Dyy attains small and fre-
quency-independent values which reflect the effective material damping

as,l =

.........................................

TABLE 2.—Fundamental Frequency Factors

L/d
(1)

5
(2)

10
(3)

15
(4)

25
(5)

40
(6)

ds,1

0.54

0.38

0.31

0.24

0.19
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in the system (of a hysteretic nature). No radiation damping is present
since neither surface nor body radially-propagating waves can be phys-
ically sustained in the soil stratum at such low frequencies. Above the
fundamental frequency of the stratum, «;, Dyy increases monotonously
with g,—an indirect evidence of the developing radiation damping.

The low-frequency values of the effective (hysteretic) damping ratio
range from 0.002, for the most rigid and shortest of the examined piles
(E,/E, = 145,000, L/d = 5), to 0.033, for all the (statically) ‘flexible’ piles
(L > L). These Dyy values are, invariably, smaller than the average hys-
teretic damping ratio in the soil, B = 0.05. This is quite understandable
since an important part of the system, the pile itself, has been consid-
ered as being of purely elastic material, with no damping at all.

The low-frequency damping ratio of a ‘flexible’ pile (i.e., with L > )
appears to be 1ndependent of both E,/E, and L/d. On the other hand,
the more “rigidly”” a pile behaves under lateral loads, the smaller is the
(hysteretic) damping ratio of the system, at low frequencies. Thus, for
example, keeping L/d constant equal to 5 while increasing E,/E, from
58 to 1,450 has no effect on the low-frequency Dyy (Fig. 5(a)); further
increasing E,/E, to 29,000 and 145,000, however, leads to a dramatic de-
cline in Dyy . A similar trend can be observed in Fig. 5(d) where E;/E,
remains constant, 145,000, while L/d decreases from 40 to 5.

Beyond the “cut-off” frequency factor, a,; (Eq. 9), the Dyy vs. a, re-
lationship seems to be dependent on the nature of pile behavior (‘flex-
ible’ or ‘non-flexible’) and on E,/E,. As seen mainly in Figs. 5(z) and
5(d), even at high frequencies ‘flexible’ piles attain Dyy values larger than
those experienced by ‘rigid and short’ piles. Moreover, it is interesting
to notice (Figs 5(d), 5(e), and 5(f)) that, for ‘flexible’ piles, :high-fre-
quency Dyy is independent of L/d but fairly sensitive to E,/E,; when

E,/E; increases, the slope of the Dyy(a,) curve becomes less steep, which
indicates that the relative contribution of radiation damping tends to
decline.

MM
Eg @’

20

ag , ag

FIG. 6.—(a) Variation of Dynamic Rocking Stiffness with 4,, E,/E; and L/d (§ =
0.05); (b) Variation of Coupled Swaylng Rockmg Dynamic Stlffness WIth a,, E;,/E
and L/d (B = 0.05) 4
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FIG.: 7—Var|at|on of Rocking Dampmg Ratio with g, /E and L/d (B = 0.50)

Rockmg —The dependence of Koiui HE:D and D upon a,’, p/ E, and
- L/d is portrayed in Fig. 6(a) and Fig. 7, respectively, for an average hys-
teretic damping ratio in the soil B = 0.05. The main differences between
swaying and rocking are summarized below. ' ;

First, rocking stiffness is very insensitive to variations in frequency,
exhlbltmg a very flat resonant valley at the natural frequency of the de-
posit in vertical shear waves. Clearly, assuming a constant, frequency-
independent, rocking stiffness is a most reasonable simplification. Hence,
the static results of Fig. 3, as well as Eq. 6b for cases of ‘flexible’ piles,
are sufficient for all frequencies.

Second, the effective damping ratio in rocking, DMM , is substantially
smaller (by a factor of about 3 to 4) than the damping ratio in swaying,
Dyy , throughout the wide range of frequencies examined (0 < g, = 1.2).
This is very similar with the differences between swaying and rocking
damping ratios of shallow foundations (e.g., 8, 26).

Another difference between D, and Dyy is observed at hlgh fre-
quency factors: The slope of the Dy (as) curve is more or less indepen-
dent of the stiffness ratio, E,/E,—not a decreasing function of E,/E, as
in case of Dygy(as) (contrast Figs. 5(b)-5(c) with Figs. 7(b)-7(c), respec-
tively). On the other hand, the effect of L/d is similar on both Dy, and
Dyy (Figs. 5(d)-5(f) and Figs. 7(d)-7(f)).

Coupled Swaying-Rocking.—The dependence of KHM/ (E;d*) and Dy, upon
a;, E,/E, and L/d is shown in Fig. 6(b) and Fig. 8, respectively. It is
evident that the coupled swaying- rocking impedance combines the key
features observed in swaying (Figs. 4 and 5) and rocking (Figs. 6(a) and
7); hence, no further discussion seems necessary herein.
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L/d (B = 0.50) ] !

‘Active’ Length Under Dynamic Loading.—With increasing frequency of
oscillation, the ‘active’ length of a ‘flexible’ pile tends to increase beyond
the static value computed ‘from Eq. 6. As an example, Fig. 9 shows a
typical set of distributions of dynamic deflections with depth, for a hor-
izontally loaded fixed-head pile of E,/E; = 29,000 and L/d = 25. Three
excitation frequency factors are studied: a; = 0.056, corresponding to near-
static conditions; a, = 0.240, corresponding to the resonant frequency of
the system (Table 2); and a, = 0.842, corresponding to high frequencies.
At the loweést frequency, the ‘active’ length is about 154, essentially equal
to the static ‘active’ length, I, (Eq. 6). By the time resonance is reached,
the “active’ length has increased to about 20d, with no significant change
in the deflected shape of the pile. Finally, beyond resonance, the shape
of the deforming pile undergoes changes, exhibiting a “wavy’’ character,

MORMALIZED OYNAMIC NORIZONTAL OLSPLACCACNTS

Real

imaginary

T |

FIG. 9.—Typical Profiles of Dynamic Horizoﬁtal Displacement of Fixed-Hea& Flex-
ible Piles; Definition of I, v :
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while at the same time the contribution of the imaginary component
increases substantially.

Careful examination of the results of the dynamic study revealed that
the ‘active’ length during resonance is critical in characterizing a pile as
‘flexible’ under dynamic loads. It is this length (equal to 20d in the ex-
ample of Fig. 9) that we are naming dynamic ‘active’ length, [;. When
L = I, the pile behaves as dynamically ‘flexible’; not in the sense that no
motion will ever reach its lower part, of length L — [; (this is certain to
happen at very high frequencies, as Fig. 9-indicates); but rather in the
sense that the exact size of L — [; has no effect on the dynamic response
at the top of the pile. In other words, dynamic ‘flexibility’ stems from
the length-independency, at all frequencies, of the dynamic impedances.
The simple, approximate relationship

ld E -0.07 ;
2 8 PR G B iy g o TR T (10)
I, E, '

has been developed for a rapid estimation of I; in practical applications.

SELECTION OF “EFFECTIVE’’ MODULUS—IMPORTANCE OF
NONHOMOGENEITY

It is instructive to compare the dynamic response characteristics of a
pile embedded in a nonhomogeneous and then in an appropriately se-
lected homogeneous deposit. To this end, it is convenient to first define
a statically “equivalent” homogeneous stratum, which, in any particular
mode, leads to a static pile stiffness identical with the stiffness of the
same pile in the actual nonhomogeneous dep051t The modulus of such
an “‘equivalent” stratum is herein named “effective” modulus, E. This
modulus corresponds to an “effective” point ata depth Z below the ground
surface of the actual deposit.

It has been found that, for a given nonhomogeneous stratum, the depth
z of the effective point depends not only on pile geometry and stiffness,
but also on the type of loading considered. Thus,.there exist three dif-
ferent depths, Zyy, Zyw and Zyy, for each of the three modes studied
in the paper (Fig. 2). Algebraic formulas appropriate for ‘flexible’ piles
have been derived for these three variables, by- comparing Egs. 7 with
the pertinent expressions given for homogeneous deposits in Refs. 6 and
4. With reasonable accuracy

E 0.19
Zun = 0.50d <E”> ........................................... (11a)
0.25
E
Zam = 0.45d <E’”> .......................................... (11b)
0.18
E
Zum = 0.80d (f) ........................................... (11c)

Equanons 11, plotted in Fig. 10, reveal that, in most situations, the “ef-
fective” points lie only about 2 to 4 diameters beneath the surface. Two
other features are worthy of note. First, the “effective’” depth, Z,;,, for
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FIG. 10.—Dependence of Depths of Three “Effective” Points on the Moduli Ratio

rocking is always larger than the “effective” depth, Zyy, for swaying.
This is quite understandable in view of the restrained deflections im-
mediately below the head of a pile in rocking (Fig. 2b)); in contrast, the
largest deflections of a pile in swaying occur at the ground surface (Fig.
2(a)). Furthermore, increasing the relative stiffness, E,/E,, of a pile tends
to move the “effective” points deeper, regardless of loading conditions.
This, again, is hardly surprising: enhancing the flexural rigidity of a pile
increases the deformations experienced at larger depths while reducing
their concentration near the surface. One may readily verify the above
statement by observing the increase in [; (Eq. 6).

A convenient way of describing the dynamic effects of soil nonhomo-
geneity on pile stiffnesses is to observe the error involved in replacing
the actual soil deposit by a statically “equivalent” homogeneous one. To
this end, Fig. 11 studies the variation with a, of the swaying and rocking
impedances of three flexible piles embedded first in a linearly nonhomo-
geneous and then in the respective statically “‘equivalent” deposits. All
three piles have an L/d ratio of 25, but three different E,/E, ratios, 58,
1,450 and 29,000.

It is evident from Fig. 11 that static * equlvalence does not gu-arantee
identical pile response under dynamic loads. The discrepancies between
the two sets of solutions range from negligibly small, in the rocking stiff-
nesses of all three piles; to appreciable, in the swaying stiffnesses of the
relatively rigid piles; and to substantial, in the effective damping ratio
of all piles in both modes. The following trends are worthy of some
discussion:

1. Resonant frequencies are underpredicted (by a factor of about 2)
when using the ““equivalent” homogeneous solutions. The explanation
is straightforward: with all three piles, the location of the “effective point,
controlled solely by static deformations, is only about 1 to 4 diameters
below the surface (Fig. 11); whereas, during resonance, up and down
propagating waves affect the soil at greater depths and, hence, the “ef-
fective” point for computing the fundamental frequency is located near
the middle of the deposit (5). As the soil modulus at this latter depth,
L/2 (= 12.5d), is higher than the “effective” modulus, E, at a depth of
1 to 4 diameters, the actual resonant frequencies are higher than the
ones predicted with the “equivalent” homogeneous stratum. Note, of
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FIG. 11.—Comparison of Dynamic Stiffness and Damping of Three Flexible Piles
Embedded in Nonhomogeneous and in Statically Equivalent Homogeneous De-
posits: (a) Swaying; (b) Rocking : :

course, that this difference is of no 1mportance in case of ﬂoatmg piles
in very deep soil deposits.

2. At high frequency factors, the swaying stiffnesses of p11es have
smaller values in a non-homogeneous than in a statically equ1va1ent
homogeneous deposit.

3. ‘Effective damping ratios are senously overpredlcted by the equ1v—
alent” homogeneous solutions. This is true for both the hysteretic (fre-
quency-independent) component and the radiation (increasing-with-fre-
quency) component of damping. Furthermore, at high frequency factors,
the actual Dyy(a;) curves tend to become less steep as E,/E; increases—
exactly the opposite of what homogeneous solutions predict. A thor-
ough explanation of all these differences seems a formidable task, which
goes-beyond the scope (and limited size) of this paper. For the time
being, it is sufficient to caution that the larger than actual amount of
damping, along with larger swaying stiffness, predicted at high fre-
quencies by statically “equivalent” homogeneous deposits may often lead
to unsafe designs of pile foundations.

SuMMARY AND CONCLUSIONS

Results of a finite-element-based comprehensive parameter study are
presented for the static and dynamic stiffnesses and the effective damp-
ing ratios at the head of laterally loaded piles embedded in a soil stratum
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with modulus proportional to depth. With these results one can obtain
estimates of the dynamic response of foundations and structures sup-
ported by piles, using the standard procedures developed for shallow
foundations (8,26).

The results presented herein are stnctly applicable only to ‘end-bear-
ing’ piles. In case of ‘floating’ plles in deep soil deposits, the results are
still valid as long as the pile is ‘flexible’ (L > I, or l;). For “short and
rigid” piles, however, the assumed model can hardly reproduce prac-
tical situations, as it requires the presence of a rigid stratum at relatively
shallow depths, which may rather 1nfrequently occur in nature.

The stiffness ratio, E,/E;, where E; is the soil Young’'s modulus at a
one-diameter depth, has been found to be the most crucial dimension-
less parameter of the system; the slenderness ratio, L/d, is of importance
only in cases of very rigid and short piles. Moreover, the dimensionless
factor, a,, associated with the frequency of excitation, influences strongly
the effective damping ratios and, to a lesser extent, the dynamic swaying
stiffness of a pile. Non-dimensional graphs display the effects of these
parameters for swaying, rocking and coupled swaying-rocking modes of
excitation; these results encompass the wide range of problem param-
eters expected in practical situations.

The presented graphs and formulas are particularly suited for prelim-
inary design calculations of pile foundations. However, care and engi-
neering judgement must be exercised before applying these results in
actual situations. Several phenomena which may appreciably affect pile
behavior in certain cases have been either ignored or only approximately
modeled in the formulation. For instance, nonlinear hysteretic soil be-
havior has only indirectly been reflected in the analysis, through the
selection of a soil stratum with a linearly increasing modulus and a lin-
early decreasing hysteretic damping ratio with depth. Perfect contact has
been assumed at the pile-soil interface, while, in reality, separation and
gapping may reduce both stiffness and radiation damping under a strong
excitation. Finally, no consideration has been given to the potentially
significant effects of the interaction with neighboring piles. Nonetheless,
it is clear that important trends and conclusions reached in this study
have offered a valuable insight to the mechanics of the problem and can
serve as a useful guide in analysis and design of laterally loaded piles.
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